Cloud condensation nucleus activation properties of biogenic secondary organic aerosol
نویسندگان
چکیده
[1] Organic aerosols in general and secondary organic aerosol (SOA) in particular are known to contribute significantly to the atmospheric population of cloud condensation nuclei (CCN). However, current knowledge is limited with respect to the nature of this contribution. This study presents a series of experiments wherein the potential for biogenically derived SOA to act as CCN is explored. Five compounds were studied: four monoterpenes (a-pinene, b-pinene, limonene, and D-carene) and one terpenoid alcohol (terpinene-4-ol). In each case the aerosol formation was driven by the reaction of ozone with the biogenic precursor. The SOA produced in each experiment was allowed to age for several hours, during which CCN concentrations were periodically measured at four supersaturations: S = 0.27%, 0.32%, 0.54%, and 0.80%. The calculated relationships between particle dry diameter and critical supersaturation were found to fall in the range of previously reported data for single-component organic aerosols; of the systems studied, a-pinene SOAwas the least CCN active, while limonene SOA exhibited the strongest CCN activity. Interestingly, the inferred critical supersaturation of the SOA products was considerably more sensitive to particle diameter than was found in previous studies. Furthermore, the relationships between particle size and critical supersaturation for the monoterpene SOA shifted considerably over the course of the experiments, with the aerosol becoming less hygroscopic over time. These results are consistent with the progressive oligomerization of the SOA.
منابع مشابه
Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol
The oxidation of biogenic volatile organic compounds (BVOCs) gives a range of products, from semivolatile to extremely low-volatility compounds. To treat the interaction of these secondary organic vapours with the particle phase, global aerosol microphysics models generally use either a thermodynamic partitioning approach (assuming instant equilibrium between semi-volatile oxidation products an...
متن کاملThe Contribution of Sulfate and Oxidized Organics in Climatically Important Ultrafine Particles at a Coral Reef Environment
In order to investigate the properties of coral reef origin secondary aerosol and especially the contribution of secondary organic aerosol, ethanol affinity to atmospheric nucleation mode particles (diameter<15nm) was measured at the Heron reef marine environment in the South Pacific Ocean during the first coral reef aerosol characterization experiment in May-June 2011 using an ultrafine organi...
متن کاملIsoprene forms secondary organic aerosol through cloud processing: model simulations.
Isoprene accounts for more than half of non-methane volatile organics globally. Despite extensive experimentation, homogeneous formation of secondary organic aerosol (SOA) from isoprene remains unproven. Herein, an incloud process is identified in which isoprene produces SOA. Interstitial oxidation of isoprene produces water-soluble aldehydes that react in cloud droplets to form organic acids. ...
متن کاملBiogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon.
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These partic...
متن کاملPotential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data
Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth’s radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largel...
متن کامل